Las mas importantes de todas las aplicaciones del Cálculo, son las ECUACIONES DIFERENCIALES.
Un fenómeno físico o de la vida real que se convierte en un modelo matemático, por lo general toma la forma de una ecuación diferencial. Por ejemplo: Modelos de crecimiento de población, modelo de circuitos eléctricos, modelo para determinar la edad de un fósil, modelo para el movimiento de un resorte etc.
- Ecuaciones diferenciales de primer orden:
Separación de variables, ED lineales, ED exactas, ED de Bernoullli,
ED homogéneas. - Modelado con Ecuaciones diferenciales de primer orden.
- Ecuaciones diferenciales de orden superior.
Ecuaciones lineales homogéneas con coeficientes constantes.
No homogéneas: método de superposición, método del anulador, variación de parámetros, Ecuación de Cauchy-Euler.
ED de orden superior no lineales. - Transformada de Laplace.
- Modelado con Ecuaciones diferenciales de orden superior.
- Sistemas de Ecuaciones Diferenciales.
- Soluciones en series de potencia.
